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1, Summary 

A,survey has  been made of recent con t r ibu t ions  t o  the s t a b i l i t y  
1 

theory  of s o l u t i o n s  t o  p a r t i a l  d i f f e r e n t i a l  equat ions .  Although some r e s u l t s  

employing approximate methods are mentioned, t h e  main emphasis i s  on t h e  

use  of Lyapunov's Direct Method. , Themmber of a p p l i c a t i o n s  employing t h i s  

powerful method is l imi t ed ,  This is mainly due t o  t h e  l a c k  of sys temat ic  

procedures  f o r  applying t h i s  method t o  p a r t i a l  d i f f e r e n t i a l  equat ions.  Some 

c l o s e l y  r e l a t e d  r e s u l t s  on the  e x i s t e n c e  and uniqueness of s o l u t i o n s  t o  p a r t i a l  

d i f f e r e n t i a l  equat ions  employinR t h e  theory of- d i s t r i b u t i o n s  Qr genera l ized  

func t ions  are alt jo given. 



2. In t r oduc t ion  

Since many phys ica l  systems mustlbe represented  by p a r t i a l  d i f f e r e n t i a l  

equa t ions  (PDE) t h e  s tudy  of p r o p e r t i e s  of s o l u t i o n s  t o  t h e s e  equat ions  is  

ve ry  important .  One of t h e s e  p r o p e r t i e s  is t h e  s t a b i l i t y ' o r  i n s t a b i l i t y  of 

c e r t a i n  s o l u t i o n s ,  Over t h e  years  a number of methods have been.developed 

f o r  i n v e s t i g a t i n g  t h e  s t a b i l i t y  p r o p e r t i e s  of s o l u t i o n s  t o  PDE. Since most 

of t h e s e  methods r e q u i r e  l i n e a r i z a t i o n ,  t runca t ion  o r  o t h e r  approximations 

of tb o r i g i n a l  equat ions ,  t h e  r e s u l t s  obtained might n o t  be s u f f i c i e n t  f o r  

s t a b i l i t y .  A method t h a t  appears  most promising is Zyapunov's Direct Method, 

which is we;ll-established i n  t h e  s t a b i l i t y  theory  of ord inary  d i f f e r e n t i a l  

equat ions .  When appl ied  proper ly ,  t h i s  method can o f f e r  many advantages- 

mathematical  r i g o r ,  a minimum knowledge concerning t h e  s o l u t i o n s ,  convenient 

i n t r o d u c t i o n  of n o n l i n e a r i t i e s ,  and meaningful i n t e r p r e t a t i o n  of t h e  r e s u l t s .  

One of t h e  main drawbacks of t h e  method is  t h e  d i f f i c u l t y  i n  cons t ruc t ing  a 

s u i t a b l e  Lyapunov funct ion.  

t o  t h e  s t a b i l i t y  theory v i a  Lyapunov's Direct Method. 

The emphasis i n  t h i s  survey w i l l  be  on c o n t r i b u t i o n s  

The concept of s t a b i l i t y  can be i n t e r p r e t e d  i n  many d i f f e r e n t  ways, 

In t h e  fol lowing,  s t a b i l i t y  w i l l  be  r e fe r r ed  t o  i n  t h e  sense of Lyapunov, 

t h a t  is: 

t o  t h e  o r i g i n a l  s o l u t i o n  f o r  a l l  f u t u r e  t i m e .  

9 

f o r  a s u f f i c i e n t l y  small pe r tu rba t ion  t h e  system w i l l  remain c lose  

In  v i r t u a l l y  a l l  of t h e  l i t e r a t u r e  reviewed, t h e  e x i s t e n c e  and uniquenecls 

of s o l u t i o n s  t o  t h e  PDE i n  ques t ion  have not  been inves t iga t ed .  

ences  i t  is  assumed beforehand t h a t  t he  PDE d e f i n e s  a dynamical system. 

In some r e f e r -  

Many 



. 7,s. 

of t h e  s t a b i l i t y  i n v e s t i g a t i o n s  have i m p l i c i t l y  imposed condi t ions  on t h e  

s o l u t i o n s  t o  PDE which are v i r t u a l l y  t h e  same as r e q u i r i n g  t h e  PDE t o  act  

as i f  they  are ord inary  d i f f e r e n t i a l  equat ions def ined  i n  some n-dimensional 
f *  

Euclidean space  which is  obviously no t  be  case. Hence any r igorous  i n v e s t i -  

g a t i o n  must t ake  i n t o  account t h e  p e c u l i a r i t i e s  of s o l u t i o n s  t o  PDE. Sect ion 

5 is  devoted t o  a review of some of t h e H t e r a t u r e  which is concerned wi th  

e s t a b l i s h i n g  t h e  p r o p e r t i e s  of s o l u t i o n s  t o  PDE. 



3. Approximate Methods 

The approximate methods are based on t h e  p r i n c i p l e  of reducing t h e  

p a r t i a l  d i f f e r e n t i a l  equat ions  t o  a system of ord inary  d i f f e r e n t i a l  equat ions ,  

This can be done by e i t h e r  approximating the  model by one having a f i n i t e  

number of degrees  of freedom v i a  s p a t i a l  d i s c r e t i z a t i o n  o r  by assuming a 
1 

harmonic t i m e  dependence. The f i r s t  case al lows t h e  a p p l i c a t i o n  of t h e  

well-known techniques f o r  analyzing t h e  s t a b i l i t y  of ord inary  d i f f e r e n t i a l  

equat ions ,  i n  p a r t i c u l a r  f o r  i n f i n i t e s i m a l l y  small per tu rba t ions ,  which is  

, . presented  as a j u s t i f i c a t i o n  f o r  t h e  system l i n e a r i z a t i o n .  

In  t h e  second case a modal ana lys i s  is i n  genera l  necessary.  To 

achieve  t h i s ,  u se  is made of t h e  Galerkin process  which i s  based on a t r u n c a t i o n  

of t h e  modal expansion. 

volved. The use  of t h e s e  methods is wide spread  and w e l l  publ ished.  

[1,23 are t h e  most r e c e n t l y  publ ished books on t h e a a b i l i t y  a n a l y s i s  of 

e las t ic  systems. 

A l i n e a r i z a t i o n  l i m i t s  aga in  t h e  amount of work in- 

Bo lo t in ' s  

Eckhaus [3 ]  develops a theory  f o r  ana iyz ingthe  s t a b i l i t y  p r o p e r t i e s  

of t h e  s o l u t i o n s  of non l inea r  p a r t i a l  d i f f e r e n t i a l  equat ions  common t o  t h e  

f i e l d  of f l u i d  mechanics, This  theory i s  based on asymptot ic  expansions wi th  

r e s p e c t  t o  s u i t a b l y  def ined  small parameters and series expansions i n  terms of 

e igenfunct ions .  The method becomes overly complicated f o r  more extensive systems. 

Lax and Richtmyer [4] and Lax E51 cons ider  t h e  gene ra l  a spec t s  of 

t h e  s t a b i l i t y  of d i f f e r e n c e  equat ions as der ived  from p a r t i a l  d i f f e r e n t i a l  

equat ions  w i t h  cons tan t  and v a r i a b l e  c o e f f i c i e n t s  r e spec t ive ly .  



Although f a r  from exhaust ive,  these  few examples of t h e  l i t e r a t u r e  

a v a i l a b l e ,  g i v e  an i n d i c a t i o n  of some of the approximate methods which 

have been appl ied .  

(December, 1966) a v a i l a b l e  t o  t h e  au thors  on t h e  p p l i c a t i o n  of Lyapunov 

The nex t  s e c t i o n  dea l s  w i th  t h e  l i t e r a t u r e  p r e s e n t l y  

S t a b i l i t y  Theory t o  PDE, 

4. Lyapunov's Direct Method 

I n  r e c e n t  yea r s  Lyapunov's Direct Method has  occupied a prominent 

p l ace  i n  s t a b i l i t y  i n v e s t i g a t i o n s  of s o l u t i o n s  t o  ord inary  d i f f e r e n t i a l  

equat ions .  The o r i g i n a l  work of Lyapunov [6]  has  generated thousands 

of c o n t r i b u t i o n s  t o  t h e  s t a b i l i t y  theory  of s o l u t i o n s  t o  ord inary  d i f f e r e n t i a l  

equat ions  and app l i ca t ions .  
i 

' b o  of t h e  m o r e d g n i f i c a n t  ones are t h e  paper 

by Kalman and Bertram [7]  and t h e  book by LaSal le  and Lefschetz  [8] ,  How- 

ever i t s  a p p l i c a t i o n  t o  t h e  s t a b i l i t y  problem of t h e  s o l u t i o n s  t o  p a r t i a l  

d i f f e r e n t i a l  equat ions  has  been l imi ted .  

The a p p l i c a t i o n  of Lyapunov's Di rec t  Method f o r  t h e  s t a b i l i t y  a n a l y s i s  

of s o l u t i o n s  t o  p a r t i a l  d i f f e r e n t i a l  equat ions r e q u i r e s  a g e n e r a l i z a t i o n  of 

t h e  method t o  func t ion  spaces  i n  which a metric p i s  def ined.  

Consequently t h e  concepts  of s t a b i l i t y  are a l s o  def ined  i n  terms of 

t h i s  metric. 

Lyapunov f u n c t i o n a l  i s  e s t a b l i s h e d  by Zubov [9] f o r  t h e  i n v a r i a n t  sets of 

dynamic systems i n  gene ra l  me t r i c  spaces ,  Zubov [9 ,  chapter  51 employs 

A gene ra l  s t a b i l i t y  theory  now based on t h e  ex i s t ence  of a 

t h i s  g e n e r a l  theory t o  d e r i v e  r e s u l t s  f o r  t h e  system of p a r t i a l  d i f f e r e n t i a l  

equat ions :  



. .. 
. ... 

where - u is an n-vector and a k-vector. 

It is furthermore assumed that the right hand side of (1) satisfies 

sufficient conditions for the existence, uniqueness and continuity of solutions 

to (1). In order to apply the earlier derived stability theorems (1) must 

define a dynamical system. 

I 

This can be done by defining a metric on the 

general n-dimensional space W o f  functions S(rr> and assigning to each 6-(~)@ 

a solution of; = z(t,i) of (1) having g =  0 as invariant set. 

Next Zubov compares the stability properties of the trivial solutions 

of the system 

. with a constant n-vector, and 

du - - gg dt (3)  

He shows that the asymptotic stability of the trivial solution of (3) assures 

the asymptotic stability of the trivial solution of (2). A similar result 

relates the stability behavior of the equilibrium of the system of partial 

differential equations of higher order 
I 

a +O..+ak . 

k 

U 

a 

1 - M a 
A 

k a  1 
axk axl ... 1 aj=O 

j =1 

(4) 
:i: ,, 
1 



t o  t h e  s t a b i l i t y  of t h e  equi l ibr ium of the system 

d s  
- = A u  d t  - -  ( 5 )  

The n a t u r e  of t h e  der ived  results i s  very  t h e o r e t i c a l  and o f t e n  

d i f f i c u l t  t o  implement i n  p r a c t i c a l  app l i ca t ions .  However a d i r e c t  appl i -  

c a t i o n  can be found i n  t h e  work of Blodgett  [ l o ] ,  

per turbed  motion i n  one space v a r i a b l e  of t h e  form: 

He cons iders  a system of 

wi th  0 < x L. e ( x , ~ )  conta ins  thehLgher o rde r  terms. For a continuous 

v e c t o r  func t ion  y(x) on t h e  i n t e r v a l  0 < x < L, t h e  norm of y i s  def ined  

as 

- -  
- -  

- wlrere -L f (x)  s a t i s f i e s  the condi t ions  f ( x )  ? C, 0 x < L 22d f(O), f ( ~ )  2 0. 

Zubov's s t a b i l i t y  theorem i s  used t o  f ind  cond i t ions  on F(x) so t h a t  t h e  

f u n c t i o n a l  
L 

V ( 2 )  = I 2x5 dx 
0 

i s  a Lyapunov func t iona l ,  

been worked out.  

An example p e r t a i n i n g  t o  a chemical r e a c t o r  has  

Ear ly  work on extending Lyapunov's Direct Method t o  p a r t i a l  d i f f e r e n t i a l  

equat ions  w a s  c a r r i e d  out  by Volkov [ll], see a l s o  Hahn 1121. He s e l e c t s  a 

c e r t a i n  family of s o l u t i o n s  from among a l l  s o l u t i o n s  of a hyperbol ic  p a r t i a l  

d i f f e r e n t i a l  equat ion  and cons iders  an  opera tor  J, This  ope ra to r  a s s o c i a t e s  



each s o l u t i o n  u ( x , t )  from t h i s  family with a f u n c t i o n a l  J ( u )  depending on t. 

I n t e g r a l  i n e q u a l i t i e s  are then used t o  de f ine  t h e  concept of de f in i t eness .  

The s t a b i l i t y  of t h e  t r i v i a l  s o l u t i o n  i s  defined correspondingly.  

However most of t h e  r e s u l t s  are not as gene ra l  as t h e  above ones. 

These o t h e r  resul ts  r e f l e c t  more d i r e c t  app l i ca t ions  t o  s p e c i f i c  problems, 

thus a l lowing  c e r t a i n  s i m p l i f i c a t i o n s  i n  der iv ing  the s t a b i l i t y  condi t ions .  

It should be  noted t h a t  i n  gene ra l  no t  s u f f i c i e n t  a t t e n t i o n  i s  pa id  t o  t h e  

ques t ion iof  e x i s t e n c e  and uniqueness of the s o l u t i o n  t o  t h e  s p e c i f i c  problem. 

Thus Movchan [13] considered t h e  equat ion 

wi th  t h e  boundary condi t ions  

a2u = 0 f o r  x = 0 and x = 1. u=s 
By d e f i n b g  t h e  metric p i n  a s u i t a b l e  manner h e  k & l e  t o  v e r i f y  r e s u l t s  

from t h e  the,ory of v i b r a t i o n s  of p i a t e s  by t ak ing  as Lyapcnov f u n c t i c n z l :  

l 2  2 2  V(U) = I (uxx + au  + ut> dx 
X 0 

Simi la r ly  Movchan [14] v e r i f i e s  classical  s t a b i l i t y  r e s u l t s  f o r  a 

system of hinged r ec t angu la r  p l a t e s  hnder compression t h e  d e f l e c t i o n  of 

which, u ( x , y , t ) ,  i s  given by t h e  dimensionless equat ion:  

* 



w i t h  t h e  boundary condi t ions  ,. . 

a2u = 0 a t  x = 0, x = 1 u = = 0 a t  y = 0, y = 1 
a %  U's 

An important  i n e q u a l i t y ,  used repea ted ly  i n  de r iv ing  s t a b i l i t y  r e s u l t s  is: 

For a func t ion  u(x)  twice ' c o n t i k s l y  d i f f e r e n t i a b l e  and 
, 

s a t i s f y i n g  u(0)  = u(1)  = 0, t h e  following i n e q u a l i t y  holds:  

1 I u2 dx > n2  I ti dx > n4 I 
o =  - o x  - 0 

Wang [15] uses  a similar r e s u l t  to study t h e  s t a b i l i t y  of a s impl i f i ed  

f l e x i b l e  veh ic l e .  

i t s  equ i l ib r ium s ta te  is  given by 

The dimensionless equat ion of per turbed  motion about  
I 

3 
= - & (EI(x)  +) a% t x m(x)v:l12 'w + v 0 II kd( t , x )  a t  

and t h e  boundary condi t ions :  

( 9 )  

. .  
Taken as a Lyapunov f u n c t i o n a l  is: 



Parks [16] a p p l i e s  Lyapunov's Direct Method t o  t h e  pane l  f l u t t e r  problem. 

The equat ion  i n  nondimensional form i s  given by: 

a 2~ a u  
Y T + a t  a x  a x  a 2 u  b + d a 7 -  a 4~ f 7 + M - = 0  

and b.oundary condi t ions  .d 

u a 7 7  2~ 0 f o r  x = 0 and x 3: 1. ax 

H i s  f i n a l  Lyapunov 

1 
Viu) = J (u 

0 

f u n c t i o n a l  is  

2 + 1 u2 + f ux 2 + duxx)dx 2 Ut + sut 2 p  

The cond i t ions  obta ined  f o r  t h e  s t a b i l i t y  of t h e  equ i l ib r ium are compared 

wi th  those  obta ined  wi th  t h e  Galerkin method e 

' 

Even thou& t h e  system equat ions  are l i n e a r ,  t h e  s e l e c t i o n  of t h e  

Lyapunov f u n c t i o n a l s  i s  n o t  a t r i v i a l  t a sk  i n  most of t hese  app l i ca t ions .  

As d i s t i n c t  from t h e  s t a b i l i t y  theory  of systems of l i n e a r  o rd ina ry  d i f f e r e n t i a l  

equations,,-.no sys temat ic  way seems t o  be a v a i l a b l e  f o r  cons t ruc t ing  Lyapunov 
' \  

f u n c t i o n a l s  f o r  l i n e a r  p a r t i a l  d i f f e r e n t i a l  equat ions.  

t h e  g e n e r a l  i n t e r p r e t a t i o n  of t h e  obtained cond i t ions  f o r  s t a b i l i t y .  

Another de f i c i ency  is 

In  o r d e r  to t a l k  about s t a b i l i t y  i n  a -meaningfu l  s ense  it' i s  o f t e n  

necessary  t o  pu t  r e s t r i c t i o n s  on t h e  i n i t i a l  states. Although Volkov [ll] 

implied t h i s  a l r eady  i n  h i s  method, t h e  idea of in t roducing  a second metric 

f o r  t h i s ' p u r p o s e  seems t o  have been o r i g i n a t e d %  Movchan [17]. 

s t a b i l i t y  is def ined  i n  terms of t h e  two metrics, r a t h e r  than  one. 

As such 

Slobodkin 



. -  

[18,19,20] applies this approach to systems with an infinite number of degrees 

of freedom. 

an aeroelastic systems, 

Lyapunov functionals and in interpreting the obtained results. 

Wang [21] uses the same idea in a stability analysis of elastic 

But again he encounters difficulties in constructing 

Some contributions concern the extension of specific results for 

ordinary differential equations to partial equations, In [22] Lakshmikantham 

obtains theorems for the stability of solutions to parabolic partial differentia& 

equations. These results are based on majorizing Lyapunov like functions. 

However the selection of these Lyapunov functions remains as an apparently 

insrmnnrmtab-le t w k ,  

continuous mechanics. 

laminar fluid flows between two parallel plates. 

Chou /23] extends Lyapunov's stability theorems to 

In particular stability theorems &e discussed concerning , 
i 

Most of the physical problems investigated so far are problems in f, 

mechanics. Thus it is quite natural that some attempts have been made to 

link Lyapunov's theorems with existing theorems in this field. 

Fronteau [24] falls in this category, 

with the original form of Liouville's theorem. 

Thewrk of 

He links Lyapunov's problem of stability 

Brayton and Miranker [25] use a theorem by Massera to establish 

stability conditions for a nonlinear system representing an electrical circuit. 

The constructed Lyapunov functionals are based on energy considerations. 

peculiarity of their method is that they make the boundary conditions com- 

ponents of the general system state vector. 

The 



Wei [26] has studied the stability of a system of partial 

differential equations describing the first-order chemical reaction in the 

presence of a catalyst. 

differential equations of<'the form 

The system reduces to a pair of identical partial 

By ( 1-Y 2 
.k at = Q ax - tJ2 Y exp l+B(l-y) 

with 0 < x < 1 and boundary conditions: - -  

21 - 0 and y(1) = 1. ax x=o 

After linearizing (14) the Euclidean metric has been taken as Lyapunov 

functional. 

Brand [27] applies the Lyapunov stability theorems to the Navier- 

Stokes equations. 

results are tentative. 

Hsr? and Bziley [28]  in a stability analysis of nonlinear reactor systems. 

He takes the vorticity as Lyapunov function. The given 

The same can be said about the results obtained by 

Pringle [29,30] explores the use of the Hamiltonian function as 

Lyapunov function for stability investigations of bodies with connected moving 

parts and damped mechanical systems. Rumiantsev [31] uses energy like functions 

as Lyapunov functions and bases his results for the stability of motion of 

'g. solid bodies with liquid-filled cavities on the work of Chetaev. 

In most of the references little attention is paid to the question 

of existence and uniqueness of solutions to the particular partial differential 

equation considered. Except in the cases where the system represents a 



dynamic system these  assumptions are no t  immediate, In t h e  next  s e c t i o n  

some re fe rences  w i l l  be given concerning recent  r e s u l t s  on t$e ex i s t ence  

and uniqueness  of s o l u t i o n s  t o  p a r t i a l  d i f f e r e n t i a l  equat ions  desc r ib ing  im- 

p o r t a n t  p h y s i c a l  systems. 

5 .  The Exis tence and Uniqueness of Solu t ions  t o  P a r t i a l  D i f f e r e n t i a l  Equations. 

Many of t h e  r e s u l t s  a v a i l a b l e  today concerning t h i s  s u b j e c t  are 

due t o  t h e  i n t r o d u c t i o n  of genera l ized  d e r i v a t i v e s  fo l lowing  t h e  work of 

Sobolev i n  t h e  1930 's  on PDE. 

spawe. r32 ,33 ,341-  E s s e n t i a l l y  t h e r e  are two methods of dea l ing  wi th  d i f f e r -  

en t i a l  opera tors .  The f i r s t  method, L e  Schwartz's theory of d i s t r i b u t i o n s  

He  introduced t h e  Sbo lev  spaces ,  t h e  flSp(Q) 

[ 3 5 ]  I s  based on t h e  gene ra l  theory  of continuous opera tors .  The second 

method is the development and a p p l i c a t i o n  of a gene ra l  theory  of unbounded 

l inear o p e r a t o r s  w i t h i n  t h e  Banach space  s t r u c t u r e  (Browder, [ 3 6 ] ) ,  

It is beyond t h e  scope of t h i s  survey t o  g ive  a l l  t h e  r e fe rences  

concerning t h i s  s u b j e c t ,  however much can be  found i n  t h e  book by Goldberg 

The wave equat ion  i s  among t h e  most important  p a r t i a l  d i f f e r e n t i a l  

equa t ions  i n  physics .  

important  p l a c e  i n  t h e  quantum theory. 

Espec ia l ly  t h e  nonl inear  wave equat ion  occupies an 

J'drgen's f i r s t  r e s u l t s  [ 3 8 ]  concerning t h e  e r i s tence  and uniqueness 

of s o l u t i o n s  i n  t h e  l a r g e  t o  t h e  nonl inear  wave equat ion:  

u - Au + u3 = f ( t )  t t  



appl ied  only t o  t h e  case  of one space var iab le .  H e  subsequently extended 

these  r e s u l t s  t o  a t h r e e  dimensional Euclidean space [39], Sather  [40] 

obtained a l s o  the  ex i s t ence  of a g loba l  c l a s s i c a l  s o l u t i o n  t o  the  i n i t i a l -  

boundary va lue  problem f o r  (15) (I 
1 

Lions and S t r auss  [ 4 $ ]  consider  the more genera l  nonl inear  evo lu t ion  

equat ion  

A( t )  u ( t )  + u" ( t )  + B(t; u ( t ) ,  u ' ( t ) )  = f ( t ) ,  0 5 t - T (16) 

. -  
where A(t)  i s  a gene ra l  unbounded formally se l f - ad jo in t  l i n e a r  operator .  

They show t h e  ex i s t ence  and uniqueness of a weak s o l u t i o n  t o  (16) and as 

such they extend a l s o  JUrgens' r e s u l t s  t o  more than t h r e e  space v a r i a b l e s .  

I n  [ 4 2 ]  ?,ions .obtained similar r e s u l t s  fo r  c e r t a i n  nonl inear  pa rabo l i c  p a r t i a l  

d i f f e r e n t i a l  equat ions  of t h e  form: 
. . -  

au at + A(u) = f 

where A is a s p e c i f i c  nonl inear  e l l i p t i c  opera tor ,  Many results on nonl inear  

p a r t i a l  d i f f e r e n t i a l  equat ions are due t o  Browder and can be found i n  h i s  

papers  on t h i s  sub jec t .  

- 

Some r e s u l t s  on t h e  s c a t t e r i n g  problem of the  quantum theory are 

given by Wilcox [ 4 3 ] ,  who g ives  a l s o  a gene ra l i za t ion  of Sobolev's imbedding 

theorem. ' *  - 

One s t r i k i n g  f e a t u r e  of t he  l i t e r a t u r e  re ferenced  is i t s  contemporary 

cha rac t e r .  Most of t h e  r e s u l t s  on so lu t ions  t o  PDE have been obtained us ing  

d i s t r i b u t i o n s  o r  genera l ized  func t ions ,  which i n  i t s e l f  is an area of r ecen t  

development. This emphasizes the  importance of implementing and propagat ing 

now a bas i c -unde r s t and ing  of t hese  methods among engineers  so t h a t  t hese  

techniques may be used f o r  real engineering problems? 



6,  Conclusions 

- 
This  survey of con t r ibu t ions  t o  the  s t a b i l i t y  of s o l u t i o n s  t o  PDE 

shows t h a t  t h e  impetus given t o  t h e  s t a b i l i t y  theory  of ord inary  d i f f e r e n t i a l  

equa t ions  by Lyapunov's Direct Method has  not  y e t  ma te r i a l i zed  f o r  PDE. The 

encouraging r e s u l t s  t oge the r  wi th  t h e  many advantages of t h i s  method emphasize 

a s t r o n g  need ' - for  f u r t h e r  i n v e s t i g a t i o n s ,  

Due t o  t h e  p r o p e r t i e s  o f t h e  d i f f e r e n t i a l  ope ra to r s  i t  i s  apparent  
. .  

t h a t  t h e r e  has  t o  be a much c l o s e r  c o r r e l a t i o n  between t h e  system and t h e  

Lyapunov f u n c t i o n a l  than  f o r  systems of ordinary d i f f e r e n t i a l  equat ions.  

This i n  t u r n  r e q u i r e s  a thorough understanding of t h e  s o l u t i o n s  of p a r t i a l  

d i f f e r e n t i a l  equat ions.  

~ 

The success  of t h e  a p p l i c a t i o n  of t h i s  method t o  engineer ing problems 

w i l l  t o  a large e x t e n t  depend on r e s u l t s  from func t iona l  a n a l y s i s  and t h e  

development of t h e  s o p h i s t i c a t e d  mathematical theorg  of genera l ized  func t ions .  
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